Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Determining the repertoire of a microbe's molecular functions is a central question in microbial biology. Modern techniques achieve this goal by comparing microbial genetic material against reference databases of functionally annotated genes/proteins or known taxonomic markers such as 16S rRNA. Here, we describe a novel approach to exploring bacterial functional repertoires without reference databases. Our Fusion scheme establishes functional relationships between bacteria and assigns organisms to Fusion-taxa that differ from otherwise defined taxonomic clades. Three key findings of our work stand out. First, bacterial functional comparisons outperform marker genes in assigning taxonomic clades. Fusion profiles are also better for this task than other functional annotation schemes. Second, Fusion-taxa are robust to addition of novel organisms and are, arguably, able to capture the environment-driven bacterial diversity. Finally, our alignment-free nucleic acid-based Siamese Neural Network model, created using Fusion functions, enables finding shared functionality of very distant, possibly structurally different, microbial homologs. Our work can thus help annotate functional repertoires of bacterial organisms and further guide our understanding of microbial communities.more » « less
- 
            Ouellette, Francis (Ed.)Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.more » « less
- 
            Abstract Over the last 25 years, biology has entered the genomic era and is becoming a science of ‘big data’. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3–4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
