skip to main content


Search for: All records

Creators/Authors contains: "Friedberg, Iddo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Determining the repertoire of a microbe's molecular functions is a central question in microbial biology. Modern techniques achieve this goal by comparing microbial genetic material against reference databases of functionally annotated genes/proteins or known taxonomic markers such as 16S rRNA. Here, we describe a novel approach to exploring bacterial functional repertoires without reference databases. Our Fusion scheme establishes functional relationships between bacteria and assigns organisms to Fusion-taxa that differ from otherwise defined taxonomic clades. Three key findings of our work stand out. First, bacterial functional comparisons outperform marker genes in assigning taxonomic clades. Fusion profiles are also better for this task than other functional annotation schemes. Second, Fusion-taxa are robust to addition of novel organisms and are, arguably, able to capture the environment-driven bacterial diversity. Finally, our alignment-free nucleic acid-based Siamese Neural Network model, created using Fusion functions, enables finding shared functionality of very distant, possibly structurally different, microbial homologs. Our work can thus help annotate functional repertoires of bacterial organisms and further guide our understanding of microbial communities.

     
    more » « less
  2. Abstract Motivation

    Advances in sequencing technologies have led to a surge in genomic data, although the functions of many gene products coded by these genes remain unknown. While in-depth, targeted experiments that determine the functions of these gene products are crucial and routinely performed, they fail to keep up with the inflow of novel genomic data. In an attempt to address this gap, high-throughput experiments are being conducted in which a large number of genes are investigated in a single study. The annotations generated as a result of these experiments are generally biased towards a small subset of less informative Gene Ontology (GO) terms. Identifying and removing biases from protein function annotation databases is important since biases impact our understanding of protein function by providing a poor picture of the annotation landscape. Additionally, as machine learning methods for predicting protein function are becoming increasingly prevalent, it is essential that they are trained on unbiased datasets. Therefore, it is not only crucial to be aware of biases, but also to judiciously remove them from annotation datasets.

    Results

    We introduce GOThresher, a Python tool that identifies and removes biases in function annotations from protein function annotation databases.

    Availability and implementation

    GOThresher is written in Python and released via PyPI https://pypi.org/project/gothresher/ and on the Bioconda Anaconda channel https://anaconda.org/bioconda/gothresher. The source code is hosted on GitHub https://github.com/FriedbergLab/GOThresher and distributed under the GPL 3.0 license.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Experimental biologists, biocurators, and computational biologists all play a role in characterizing a protein’s function. The discovery of protein function in the laboratory by experimental scientists is the foundation of our knowledge about proteins. Experimental findings are compiled in knowledgebases by biocurators to provide standardized, readily accessible, and computationally amenable information. Computational biologists train their methods using these data to predict protein function and guide subsequent experiments. To understand the state of affairs in this ecosystem, centered here around protein function prediction, we surveyed scientists from these three constituent communities.

    Results

    We show that the three communities have common but also idiosyncratic perspectives on the field. Most strikingly, experimentalists rarely use state-of-the-art prediction software, but when presented with predictions, report many to be surprising and useful. Ontologies appear to be highly valued by biocurators, less so by experimentalists and computational biologists, yet controlled vocabularies bridge the communities and simplify the prediction task. Additionally, many software tools are not readily accessible and the predictions presented to the users can be broad and uninformative. We conclude that to meet both the social and technical challenges in the field, a more productive and meaningful interaction between members of the core communities is necessary.

    Availability and implementation

    Data cannot be shared for ethical/privacy reasons.

    Supplementary information

    Supplementary data are available at Bioinformatics Advances online.

     
    more » « less
  4. Abstract Motivation

    Antibiotic resistance constitutes a major public health crisis, and finding new sources of antimicrobial drugs is crucial to solving it. Bacteriocins, which are bacterially produced antimicrobial peptide products, are candidates for broadening the available choices of antimicrobials. However, the discovery of new bacteriocins by genomic mining is hampered by their sequences’ low complexity and high variance, which frustrates sequence similarity-based searches.

    Results

    Here we use word embeddings of protein sequences to represent bacteriocins, and apply a word embedding method that accounts for amino acid order in protein sequences, to predict novel bacteriocins from protein sequences without using sequence similarity. Our method predicts, with a high probability, six yet unknown putative bacteriocins in Lactobacillus. Generalized, the representation of sequences with word embeddings preserving sequence order information can be applied to peptide and protein classification problems for which sequence similarity cannot be used.

    Availability and implementation

    Data and source code for this project are freely available at: https://github.com/nafizh/NeuBI.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Ouellette, Francis (Ed.)
    Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills. 
    more » « less
  6. Abstract

    Over the last 25 years, biology has entered the genomic era and is becoming a science of ‘big data’. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3–4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.

     
    more » « less
  7. Abstract

    Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin‐derived compound design and testing that combines sequence‐free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20‐mer candidate peptides and scored them for charge, α‐helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity againstEscherichia coliandPseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical‐based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.

     
    more » « less